

Tetrahedron 59 (2003) 5337–5345

TETRAHEDRON

Novel and efficient method for esterification, amidation between carboxylic acids and equimolar amounts of alcohols, and amines utilizing $Me₂NSO₂Cl$ and N,N-dimethylamines; its application to the synthesis of coumaperine, a natural chemopreventive dieneamide

Kazunori Wakasugi,^a Atsushi Nakamura,^a Akira Iida,^a Yoshinori Nishii,^a Nobuji Nakatani,^b Shoji Fukushima^c and Yoo Tanabe^{a,*}

a Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
bI aboratory of Chemistry, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-0 Laboratory of Chemistry, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-0022, Japan ^c First Department of Pathology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-0022, Japan

Received 23 April 2003; revised 3 May 2003; accepted 6 May 2003

Abstract—Various carboxylic esters or amides were prepared in good to excellent yield between carboxylic acids and equimolar amounts of alcohols or amines under very mild conditions $(0-45^{\circ}\text{C})$; within 3 h) using dimethylsulfamoyl chloride (Me₂NSO₂Cl; 1) combined with N,Ndimethylamines (Me₂NR: 2a; R=Me, 2b; R=Bu). The choice of the sulfamoyl chloride and the amine is crucial for the reaction; that is, sterically uncrowded amines accelerated the present esterification and amidation. This agent had some advantages over methanesulfonyl chloride (3)/amines as for the atom-economy, avoidance of side reactions, and had very high chemoselectivity toward the carboxyl group vs the hydroxyl group; the experiment was performed by the addition of 1 to the mixture of carboxylic acids and alcohols. Application of this method to the synthesis of coumaperine, a chemopreventive natural product, was performed using the present amidation as a key step. \odot 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

From the standpoint of elaborated complex natural product synthesis and process chemistry, mild and effective esterification or amidation between equimolar amounts of carboxylic acids and alcohols or amines is one of the most frequently used unit reactions due to its broad utility.^{[1](#page-8-0)} Several efficient methods have been exploited for the esterification and/or amidation using specific dehydrating reagents under mild liquid-phase conditions; 1,3-dicyclohexylcarbodiimide (DCC) ,^{[2](#page-8-0)} halopyridinium salts,^{[3](#page-8-0)} 2,4,6-trichlorobenzoyl chloride,^{[4](#page-8-0)} (Im)₂CO (N,N-carbonyldiimida-zole),^{[5](#page-8-0)} bis(2-oxo-3-oxazoilodinyl)phosphinic chloride (BOP-Cl),[6](#page-8-0) di-2-pyridyl carbonate (DPC),[7](#page-8-0) di-2-pyridyl thiocarbonate $(DPTC)$,^{[8](#page-8-0)} 2-methyl-6-nitrobenzoic anhydride $(MNBA)^9$ $(MNBA)^9$ and other condensation agents.^{[10](#page-8-0)}

In view of green chemistry, there still remains a strong need

for simpler, more convenient, inexpensive, and atomeconomical agents. The mixed anhydride method using different counter acids is recognized as a rational process. The method using counter sulfonyl mixed anhydrides with carboxylic acids is a promising candidate due to its simplicity, availability, and economy.

Consistent with our interests in green chemical esterifica-tions,^{[11](#page-8-0)} sulfonylations,^{[12](#page-8-0)} and silylations,^{[13](#page-8-0)} we have reported some methods for smooth sulfonylations of alcohols using sulfonyl chlorides promoted by the sterically unhindered amines such as $Me₃N$ and $Me₂N(CH₂)nNMe₂$, wherein these amines significantly activate sulfonyl chlorides with formation of the reactive sulfonylammonium chloride intermediates. We describe the full details^{[14](#page-8-0)} of a novel efficient condensation agent for esterification and amidation, dimethylsulfamoyl chloride (Me₂NSO₂Cl; 1) together with sterically unhindered N , N -dimethylamines (Me₂NR: 2a; R=Me, 2b; R=Bu) [\(Scheme 1\)](#page-1-0), and its application to the synthesis of coumaperine, a naturally occurring bioactive compound, using the present amidation method as a key step.

Keywords: esterification; amidation; sulfamoyl chloride; tertiary amine; coumaperine.

^{*} Corresponding author. Tel.: $+81-795-65-8394$; fax: $+81-795-65-9077$; e-mail: tanabe@kwansei.ac.jp

Scheme 1.

2. Results and discussion

We focused on the mixed anhydride formation between carboxylic acids and sulfonyl chlorides, because some sulfonyl chlorides are more inexpensive and atom-economic than acid chlorides such as 2,4,6-trichlorobenzoyl chloride.[4](#page-8-0) Thus, use of commercially available sulfonyl chlorides and tertiary amines was initially examined.

Methanesulfonyl chloride (MsCl; 3) is the most obvious candidate, and a study using 3 together with $Et₃N$ has been reported.^{[10g](#page-8-0)} As shown in Table 1, reexamination of this method in our hands revealed that the high yields previously reported were not reproducible; excess amounts of 3 (2.0 equiv.) and Et₃N (4.0 equiv.) were required for esterification (reported account; 1 equiv. of 3 and 2 equiv. of Et₃N at -10° C in THF solvent). Thus, we assumed that the first step of the mixed-anhydride formation does not proceed smoothly, i.e. considerable concomitant loss of 3 occurs due to undesirable side sulfene-dimerization.[15](#page-8-0) The addition of Me₃N·HCl to more basic Et₃N for in situ generation of Me₃N (2a; bp 2.9°C) and the use of 1.0 equiv. of N,N-dimethylaminopyridine (DMAP) significantly improved the yield, wherein 2a enhanced the reactivity of 3 and DMAP accelerated the acylation step.

Although this reaction necessitated somewhat excess amounts of the condensation reagents, application of the conditions in Table 1 resulted in successful esterifications in good to high yields [\(Table 2\)](#page-2-0).

The method using MsCl (3), however, was not chemoselective, that is, not applicable to the case of co-existence of acids and alcohols; methanesulfonate 10 was produced as a major by-product as exemplified in Eq. 1 of [Scheme 2.](#page-2-0) Moreover, in the case of amidation using 3-phenylpropanoic acid with 1-phenethylamine produced not only the desired amide 11 but also sulfonamide 12, which was apparently derived from the sulfene-dimerization, 15 even following the standard procedure shown in Tables 1 and 2 (Eq. 2).

To overcome these problems, we planned the use of Me₂NSO₂Cl (1) instead of MsCl (3), because 1 lacks α hydrogens, which cause the undesirable sulfene-dimerization. The initial trial of esterification of 3-phenylpropanoic acid with an equimolar amount of 1-octanol resulted in 34% yield using Et_3N (3.0 equiv.) in MeCN at $0-5^{\circ}$ C—room temperature [\(Table 3\)](#page-3-0). The use of $Me₃N·HCl$ (2a·HCl) also affected the present esterification, and the yield markedly increased up to 86%. The addition of DMAP (0.1 and 1.0 equiv.) enhanced the second acylation step up to 93 and

Table 1. Esterification between 3-phenylpropanoic acid and equimolar amounts of 1-octanol using MsCl (3)/amines

^a DMAP (0.1 equiv.) was used in the second step. b DMAP (1.0 equiv.) was used in the second step.

K. Wakasugi et al. / Tetrahedron 59 (2003) 5337-5345

Table 2. Esterification between carboxylic acids and equimolar amounts of alcohols using MsCl (3)/amines

^a Without DMAP.

97%, respectively. (Note: After finishing this work, we have recently found that DMAP was replaced by more inexpensive and less toxic 1-methylimidazole for the acylation step. See [Table 3](#page-3-0) and Experimental Section 3.5.) The only amine used, N,N-dimethylbutylamine (BuNMe₂, 2b) in the place of $Et₃N$ and $2a$ ·HCl, also promoted esterification at 40–45 °C (92%). Results of the screening of other amines with DMAP (0.1 equiv.) under identical conditions were as follows; DABCO¹⁶ (82%), TMEDA (63%), DBU (42%), and $PhCH₂NMe₂$ (31%). MeCN was a better solvent than toluene or THF.

Based on these results, esterifications between several carboxylic acids and alcohols were successfully performed ([Table 4](#page-4-0)). The esters of primary and secondary alcohols were prepared in good to excellent yields under the two unified conditions. Several functionalities on alcohols such as a double and a triple bond, a halogen, and an ester were tolerated. Higher yields were generally obtained compared with those reported using the halopyridinium salts method. $3a$ This reaction is so mild that E-crotonic acid, a base-sensitive substrate (leading to easy isomerization) underwent esterification and maintained good stereochemistry. Unfortunately,

^a Use of 1-methylimidazole instead of DMAP.
^b Reaction temperature; $45-50^{\circ}$ C.

sterically crowded substrates such as pivalic acid and t-butyl alcohol did not produce high yields. The yields were 40% between pivalic acid and 1-octanol and only trace amounts between 3-phenylpropanoic acid and t-butyl alcohols.

The salient features are as follows: (i) $Me₂NSO₂Cl$ (1) and the amines used are relatively inexpensive and commercially available, structurally simple, and atom-economical, and 1 is slightly less hygroscopic among sulfonyl chlorides. (ii) The N,N-dimethyl structure in 2a and 2b is crucial, except for the case of DABCO, 16 because our previous studies of green chemical sulfonylations suggest that such less-hindered amines significantly activate the sulfonyl chlorides during the first mixed-anhydride formation.^{[12](#page-8-0)} (iii) This agent had very high chemoselectivity toward the carboxyl group vs the hydroxyl group, namely, the

experiment could be performed with the addition of 1 into the mixture of carboxylic acids and alcohols. This chemoselectivity is rarely observed using other sulfonyl chloride reagents. Thus, the experimental procedure is simple and convenient, and would ensures the lactonization reaction of ω-hydroxyl carboxylic acids.

This protocol could also be extended to an amidation reaction between carboxylic acids and equimolar amounts of primary or secondary amines [\(Table 5](#page-5-0)). The present reaction proceeded with good to excellent yield in every case examined. It should be noted that no substantial isomerization occurred when using E-crotonic acid.

Finally, we describe an application to natural product synthesis. Coumaperine (34) is a dieneamide isolated from

K. Wakasugi et al. / Tetrahedron 59 (2003) 5337–5345 5341

Table 4. Esterification between various carboxylic acids and equimolar amounts of alcohols using Me₂NSO₂Cl (1)/amines (2a or 2b)

^a A: use of Me₃N·HCl (29·Hcl)/Et₃N, 0–5°C, 3 h. B: use of BuNMe₂ (2b), 40–45°C, 1 h. b Parantheses indicate the reported data using 2-chloro-1-methylpyridinium iodide. c DMAP (1.0 equiv.) was used. d $E/Z=10:1$. e

`ОН

 $CO₂H$

 \prec

Piper nigrum L. (white pepper), and is present at a concentration of approximately 6 ppm in dry fruit.^{[17](#page-8-0)} There was notable antioxidative activity of 34 against linoleic acid oxidation.[17b](#page-8-0) A recent study indicates that 34 has significant chemopreventive activity in rats carcinogen-esis.^{[18](#page-8-0)} These informations prompted us to synthesize coumaperine (34) using the present amidation as a key step ([Scheme 3\)](#page-3-0).

Methoxymethyl (MOM) protection of 4-hydroxybenzaldehyde (29) followed by the Wadsworth–Horner–Emmons reaction using methyl 4-phosphono-2-butenoate (30) afforded the $\alpha, \beta-E, \gamma, \delta-E$ rich diene ester 31 in a one-pot procedure. Hydrolysis of methyl ester 31 gave α, β -E, γ, δ -E

rich carboxylic acid 32, which was recrystallized from 2 propanol to give pure α , β -E, γ , δ -E acid 32.

B 21 71^* e

The present essentially neutral amidation of 32 with piperidine proceeded successfully in 90% yield (compared to 76% with small amounts of polymer by the method using 2-chloro-1-methylpyridinium iodide under standard conditions^{3a}). Finally, the deprotection of MOM with conc. HCl gave coumaperine (34) (purity; 99.8% by HPLC analysis) in 52% overall yield.

In conclusion, practical esterification and amidation were achieved using the combined reagents, $Me₂NSO₂Cl$ (1) and Me₂NR (2a; R=Me, 2b; R=Bu). This method has the

	11.9921111.9997 $\begin{array}{c} + \end{array}$ R^2R^3NH (1.0 eq.)	1021100201 (1, 2.0 cq.), 1002111 (2, 0.0 cq.)		
		cat. DMAP (0.1 eq.) / MeCN	R^1 CONR ² R^3	
$\mathrm{R}^{1}\mathrm{CO}_{2}\mathrm{H}$	$\mathbf{R}^2\mathbf{R}^3\mathbf{NH}$	Method* $^{\mathrm{a}}$	$\bf Product$	Yield (%)
Ph CO ₂ H	NH ₂ Ph ²	$_{\rm B}^{\rm A}$	$\bf 22$	95 96
	${\rm ^t_{\rm BuNH}}^2$	\boldsymbol{A} $\, {\bf B}$	23	96 97
	N H	$_{\rm B}^{\rm A}$	24	$\frac{92}{93}$
CO ₂ H	N H	$_{\rm B}^{\rm A}$	${\bf 25}$	$\mathbf{92}$ 92
PhCO ₂ H	N H	$_{\rm B}^{\rm A}$	$26\,$	$90\,$ 94
CO ₂ H	$^{\rm t} {\mbox{BuNH}}^2$	$_{\rm B}^{\rm A}$	$\bf 27$	88^{*} $^{\rm b,c}$ $92* b.c$
	Ĥ	$\mathbf A$ $\, {\bf B}$	28	$90*$ $^{\circ}$ $93*$ c

Table 5. Amidation between various carboxylic acids and equimolar amounts of primary or secondary amines using Me₂NSO₂Cl (1)/amines (2a or 2b) R^1 CO₂H (1.0 eq.) Me₂NSO₂Cl (1: 2.0 eq.) Me₂NR (2: 3.0 eq.)

^a A: use of Me₃N·HCl (2a·HCl)/Et₃N, 0–5°C, 3 h. B: use of BuNMe₂ (2b), 40–45°C, 1 h. ^b DMAP (1.0 equiv.) was used. c E only.

advantages of being the mild conditions $(0-45^{\circ}\text{C})$; within 3 h), chemoselective, operationally simple, reagent economical, and has good reactivity. These characteristics rival those reported for related condensation agents.

3. Experimental

3.1. General

Melting points were determined on a hot-stage microscope apparatus (Yanagimoto) and are uncorrected. NMR spectra were recorded on a JEOL ALPHA 400 or DELTA 300 spectrometer, operating at 400 or 300 MHz for ¹H NMR and 100 MHz for ¹³C NMR. Chemical shifts (δ ppm) in CDCl₃ were reported downfield from TMS $(=0)$ for $1H NMR$. For ¹³C NMR, chemical shifts were reported in the scale relative to $CDCl₃$ (77.00 ppm) as an internal reference. IR Spectra were recorded on a JASCO FT/IR-8000 spectrophotometer. Optical rotations were measured on a JASCO DIP-370 (Δ 589 nm).

Attention. It is important to dry up $Me₃N·HCl$ (2a·HCl) under reduced pressure before use.

The following obtain esters and amides are known

compounds: 1-octyl 3-phenylpropanoate (4) ;^{[11d](#page-8-0)} 2-octyl 3phenylpropanoate (7) ;^{[19](#page-8-0)} 1-octyl cyclohexanecarboxylate (9) ;^{[20](#page-8-0)} 2-phenylethyl 3-phenylpropanoate (13) ;^{[21](#page-8-0)} benzyl 3phenylpropanoate $(14);^{22}$ $(14);^{22}$ $(14);^{22}$ phenyl 3-phenylpropanoate $(15);^{23}$ $(15);^{23}$ $(15);^{23}$ 1-octyl benzoate $(19);^{24}$ $(19);^{24}$ $(19);^{24}$ 2-octyl benzoate $(20);^{25}$ $(20);^{25}$ $(20);^{25}$ $N-[S]-1$ -phenylethyl]-3-phenylpropionamide (22);^{[26](#page-8-0)} N-(1,1-dimethylethyl)-3-phenylpropionamide (23) ;^{[27](#page-8-0)} N-(3phenylpropionoyl)piperidine (24) ;^{[28](#page-8-0)} N-(cyclohexanecarbonyl)piperidine (25) ;^{[29](#page-8-0)} N-(benzoyl)piperidine (26) ;^{[30](#page-8-0)} N-(2Ebutenoyl) piperidine $(28).$ ^{[31](#page-8-0)}

3.2. General procedure of esterification using $MeSO₂Cl$ (3) , Et₃N, and Me₃N·HCl $(2a$ ·HCl)

Me3N·HCl (2a·HCl; 4.50 mmol) was added to a stirred solution of a carboxylic acid (1.00 mmol) and Et_3N (4.50 mmol) in MeCN (1.0 ml) at $0-5^{\circ}\text{C}$ under an Ar atmosphere, and the mixture was stirred for 10 min. MsCl $(3; 2.00 \text{ mmol})$ in MeCN (1.0 ml) was added to the mixture at -15 – -10 °C, and the mixture was stirred at that temperature for 30 min. An alcohol (1.00 mmol) and DMAP (1.00 mmol) in MeCN (1.0 ml) was successively added to the mixture at -15 – -10° C. Then the mixture was stirred at that temperature for 1 h and at $20-25^{\circ}$ C for 1 h. Water was added to the mixture, which was extracted with ether. The organic phase was washed with water, brine,

dried (Na_2SO_4) , and concentrated. The obtained crude product was purified by silica-gel column chromatography $(hexane/ether=40:1-10:1)$ to give the desired ester.

3.3. General procedure of esterification using $Me₂NSO₂Cl$ (1), Et₃N, Me₃N·HCl (2a·HCl), and cat. $DMAP \langle method A \rangle$

Me₃N·HCl (2a·HCl; 2.00 mmol) was added to a stirred solution of a carboxylic acid (1.00 mmol), an alcohol (1.00 mmol) , $Et_3N (3.00 \text{ mmol})$, and DMAP (0.10 mmol) in MeCN (1.0 ml) at $0-5^{\circ}$ C under an Ar atmosphere, and the mixture was stirred for 10 min. Me₂NSO₂Cl $(1; 2.00 \text{ mmol})$ in MeCN (1.0 ml) was added to the mixture at $0-5^{\circ}C$, and the mixture was stirred at that temperature for 3 h. Water was added to the mixture, which was extracted with ether. The organic phase was washed with water, brine, dried (Na_2SO_4) , and concentrated. The obtained crude product was purified by silica-gel column chromatography (hexane/ ether= $40:1-10:1$) to gave the desired ester.

3.4. General procedure of esterification using $Me₂NSO₂Cl(1), BuNMe₂(2b), and cat. DMAP/method B$

 $Me₂NSO₂Cl$ (1; 2.00 mmol) in MeCN (1.0 ml) was added to a stirred solution of a carboxylic acid (1.00 mmol), an alcohol (1.00 mmol), BuNMe₂ (3.00 mmol), and DMAP (0.10 mmol) in MeCN (1.0 ml) at $40-45^{\circ}$ C under an Ar atmosphere, and the mixture was stirred at that temperature for 1 h. A similar work up procedure as described above (the method A) gave the desired ester.

3.5. Typical procedure of esterification of 3 phenylpropanoic acid with 1-octanol using $Me₂NSO₂Cl$ (1) , Et₃N, Me₃N·HCl $(2a$ ·HCl) and cat. 1-imidazole (in the place of cat. DMAP)

In a similar manner as for the general procedure of \langle method A) the reaction proceeded in 92% yield.

3.5.1. 9-Decene-1-yl 3-phenylpropaonate (5). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.24–1.42 (10H, m), 1.54–1.64 (2H, m), 1.99–2.09 (2H, m), 2.62 (2H, t, $J=7.8$ Hz), 2.95 (2H, t, $J=7.8$ Hz), 4.05 (2H, t, $J=6.7$ Hz), $4.89-5.05$ (2H, m), $5.74-5.89$ (1H, m), $7.16-$ 7.32 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 25.86, 28.59, 28.80, 29.01, 29.17, 29.32, 31.00, 33.76, 35.93, 64.62, 114.15, 126.21, 128.27, 128.46, 139.14, 140.57, 172.99; IR (neat) 3028, 2928, 2855, 1736, 1456, 1161 cm⁻¹. Anal. found: C, 79.2; H, 9.7%. Calcd for $C_{19}H_{28}O_2$: C, 79.12; H, 9.78%.

3.5.2. 2-Hexyn-1-yl 3-phenylpropaonate (6). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 0.97 (3H, t, J=7.3 Hz), 1.48–1.58 (2H, m), 2.14–2.24 (2H, m), 2.66 (2H, t, $J=7.8$ Hz), 2.96 (2H, t, $J=7.8$ Hz), 4.67 (2H, s), 7.17– 7.31 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.43, 20.72, 21.84, 30.81, 35.68, 52.85, 74.03, 87.56, 126.27, 128.29, 128.49, 140.35, 172.21; IR (neat) 2965, 2240, 1742, 1454, 1381, 1152, 1032 cm⁻¹. Anal. found: C, 78.1; H, 7.6%. Calcd for $C_{15}H_{18}O_2$: C, 78.23; H, 7.88.

3.5.3. N-1-Phenylethyl(methylsulfonyl)methanesulfonamide (12). Colorless crystals; mp $120.0-121.0^{\circ}$ C; ¹H

NMR (400 MHz, CDCl₃) δ 1.60 (3H, d, J=7.1 Hz), 3.12 $(3H, s)$, 3.55 (1H, d, J=15.1 Hz), 4.16 (1H, d, J=15.1 Hz), $4.62 - 4.72$ (1H, m), 5.60 (1H, d, $J = 8.1$ Hz), $7.16 - 7.46$ (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 23.04, 42.18, 55.03, 68.90, 126.71, 128.53, 129.19, 140.52; IR (KBr) 3308, 2980, 1426, 1339, 1321, 1167, 1138 cm⁻¹. Anal. found: C, 43.21; H, 5.43; N, 4.92%. Calcd for $C_{10}H_{15}NO_4S_2$: C, 43.30; H, 5.45; N, 5.05%.

3.5.4. 6-Chlorohexyl 3-phenylpropanoate (16). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.27–1.37 (2H, m), $1.29-1.39$ (2H, m), $1.56-1.66$ (2H, m), $1.71-1.81$ (2H, m), 2.63 (2H, t, J=7.6 Hz), 2.95 (2H, t, J=7.6 Hz), 3.52 (2H, t, $J=6.7$ Hz), 4.06 (2H, t, $J=6.6$ Hz), 7.17–7.31 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 25.22, 26.47, 28.44, 30.97, 32.41, 35.86, 44.89, 64.31, 126.22, 128.26, 128.45, 140.51, 172.93; IR (neat) 2938, 2863, 1734, 1454, 1258, 1163, 700 cm^{-1} . Anal. found: C, 66.8; H, 7.7%. Calcd for $C_{15}H_{21}ClO_2$: C, 67.03; H, 7.88%.

3.5.5. Ethyl 6-(3-phenylpropanoyloxy)hexanoate (17). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.25 (3H, t, $J=7.3$ Hz), $1.29-1.39$ (2H, m), $1.56-1.68$ (4H, m), 2.28 (2H, t, $J=7.5$ Hz), 2.62 (2H, t, $J=7.8$ Hz), 2.95 (2H, t, $J=7.8$ Hz), 4.06 (2H, t, $J=6.6$ Hz), 4.07–4.17 (2H, m), 7.16–7.32 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 14.21, 24.53, 25.45, 28.28, 30.95, 34.13, 35.86, 60.21, 64.22, 126.20, 128.24, 128.44, 140.50, 172.90, 173.48; IR (neat) 2941, 2866, 1734, 1454, 1238, 1163 cm⁻¹. Anal. found: C, 69.9; H, 8.3%. Calcd for C17H24O4: C, 69.84; H, 8.27.

3.5.6. 2-Octyl cyclohexanecarboxylate (18). Colorless oil; ¹ ¹H NMR (400 MHz, CDCl₃) δ 0.88 (3H, t, J=7.0 Hz), 1.18 $(3H, d, J=6.1 \text{ Hz})$, $1.21-1.36$ (12H, m), $1.40-1.50$ (2H, m), 1.55–1.65 (2H, m), 1.70–1.80 (2H, m), 1.84–1.94 (2H, m), 2.21–2.29 (1H, m), 4.81–4.89 (1H, m); 13C NMR (100 MHz, CDCl3) ^d 14.04, 20.01, 22.56, 25.34, 25.44, 25.49, 25.81, 28.98, 29.10, 29.12, 31.74, 35.97, 43.48, 70.39, 175.78; IR (neat) 2932, 2857, 1730, 1453, 1377, 1248, 1173 cm⁻¹. Anal. found: C, 75.1; H, 11.6%. Calcd for C15H28O2: C, 74.95; H, 11.74%.

3.5.7. 1-Octyl 2-butenoate $(E/Z=10:1)$ (21). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 0.80–0.96 (3H, m), 1.21– 1.41 (10H, m), 1.59–1.69 (2H, m), 1.80–1.96 (3H, m), 4.09 $(2H \times 1/11, t, J=6.8 \text{ Hz})$, 4.11 $(2H \times 10/11, t, J=6.8 \text{ Hz})$, 5.81–5.89 (1H, m), 6.92–7.00 (1H, m); 13C NMR (100 MHz, CDCl3) ^d 14.05, 17.91, 22.62, 25.87, 25.95, 28.58, 28.69, 29.17, 29.22, 31.78, 39.21, 64.33, 64.87, 118.37, 122.85, 130.43, 144.30, 166.67; IR (neat) 2928, 2857, 1726, 1447, 1312, 1181, 1103 cm⁻¹. Anal. found: C, 72.5; H, 11.3%. Calcd for C₁₂H₂₂O₂: C, 72.68; H, 11.18.

3.6. General procedure of amidation using $Me₂NSO₂Cl$ (1), Et₃N, Me₃N·HCl (2a·HCl), and cat. DMAP (method \mathbf{A}

An amine (1.00 mmol) , Et_3N (3.00 mmol) , and DMAP (0.10 mmol) in MeCN (1.0 ml) was added to a stirred solution of a carboxylic acid (1.00 mmol) , Me₃N·HCl $(2a\text{-}HCl; 2.00 \text{ mmol})$, and $Me₂NSO₂Cl$ $(1; 2.00 \text{ mmol})$ in MeCN (1.0 ml) at $0-5^{\circ}\text{C}$ under an Ar atmosphere, and the mixture was stirred at that temperature for 3 h. Water was

added to the mixture, which was extracted with EtOAc. The organic phase was washed with water, brine, dried $(Na₂SO₄)$, and concentrated. The obtained crude product was purified by silica-gel column chromatography (hexane/ $EtOAc=3:1-1:1$) to give the desired amide.

3.7. General procedure of amidation using $Me₂NSO₂Cl$ (1), BuNMe₂ (2b), and cat. DMAP \langle method B \rangle

An amine (1.00 mmol) , BuNMe₂ (3.00 mmol) and DMAP (0.10 mmol) in MeCN (1.0 ml) was added to the stirred solution of a carboxylic acid (1.00 mmol) and Me₂NSO₂Cl $(1; 2.00 \text{ mmol})$ in MeCN (1.0 ml) at $40-45^{\circ}$ C under an Ar atmosphere, and the mixture was stirred at that temperature for 1 h. A similar work-up procedure as described above (method A) gave the desired amide.

3.7.1. N-(1,1-Dimethylethyl)-2E-butenamide (27). Colorless crystals; mp $102.5 - 103.5$ °C; ¹H NMR (400 MHz, CDCl₃) δ 1.38 (9H, s), 1.82 (3H, dd, J=1.7, 6.8 Hz), 5.25 (1H, brs), 5.72 (1H, dq, $J=1.7$, 15.1 Hz), 6.75 (1H, dq, J=6.8, 15.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.47, 28.82, 51.09, 126.21, 138.72, 165.28; IR (neat) 3264, 1626, 1458, 1354, 1227, 980 cm⁻¹. Anal. found: C, 67.8; H, 10.6; N, 9.88%. Calcd for C₈H₁₅NO: C, 68.04; H, 10.71; N, 9.92.

3.7.2. Methyl 5-(4-methoxymethoxyphenyl)-2E,4-butadienoate (31). A mixture of chloromethyl methyl ether (874 mg, 10.9 mmol) and 4-hydroxybenzaldehyde (29; 1.11 g, 9.05 mmol) in MeCN (10.0 ml) was added to a stirred suspension of NaH (0.94 g, 23.5 mmol) in MeCN (10.0 ml) at $0-5^{\circ}\text{C}$ under an Ar atmosphere and the mixture was stirred the same temperature for 1 h. Methyl 4 phosphono-2-butenoate (30; 2.14 g, 9.05 mmol) in MeCN (10.0 ml) was added to that stirred suspension at $0-5^{\circ}C$ and the mixture was stirred the same temperature for 1 h. Water was added to the mixture, which was extracted with EtOAc. The organic phase was washed with water, brine, dried $(Na₂SO₄)$, and concentrated. The obtained crude product was purified by silica-gel column chromatography (hexane/ EtOAc=7:1) to give the desired product 31 (2.28 g, 70%; 2- (α,β) -E,4-(γ,δ)-E/2-(α,β)-E,4-(γ,δ)-Z=>95:5).

Colorless crystals; mp $52.0-54.0^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 3.47 (3H, s), 3.76 (3H, s), 5.19 (2H, s), 5.95 (1H, d, $J=15.4$ Hz), 6.75 (1H, dd, $J=10.5$, 15.4 Hz), 6.85 (1H, d, $J=15.6$ Hz), $7.01-7.03$ (2H, m), $7.35-7.45$ (2H, m), 7.43 (1H, dd, J=10.5, 15.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 51.28, 55.87, 94.09, 116.31, 119.67, 124.38, 128.45, 129.73, 139.96, 144.97, 157.88, 167.36; IR (KBr) 3383, 2951, 1714, 1626, 1599, 1510, 1437, 1246, 1153, 995, 847 cm⁻¹. Anal. found: C, 67.55; H, 6.39%. Calcd for $C_{14}H_{16}O_4$: C, 67.73; H, 6.50%.

3.7.3. 5-(4-Methoxymethoxyphenyl)-2E,4E-butadienoic acid (32). KOH (1.76 g, 31.4 mmol) in water (6.0 ml) was added to a stirred solution of methyl 5-(4-methoxymethoxyphenyl)-2E,4-butadienoate $(31; 1.56 g, 6.29 mmol)$ in MeOH (12 ml) at room temperature. The mixture was stirred at 80° C for 15 h. After cool down, the reaction mixture was concentrated under reduced pressure. 6 M-HCl aqueous solution was added to the mixture, which was extracted with EtOAc. The organic phase was washed with

water and brine, dried (Na_2SO_4) and concentrated to give 5-(4-methoxymethoxyphenyl)-2E,4-butadienoic acid (1.37 g, 93%). Recrystallization from 2-propanol gave pure $2E,4E$ acid (32).

Colorless crystals; mp $149.5-151.0^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 3.48 (3H, s), 5.20 (2H, s), 5.95 (1H, d J=15.1 Hz), 6.79 (1H, dd, $J=10.7$, 15.1 Hz), 6.90 (1H, d, $J=15.1$ Hz), 7.02–7.04 (2H, m), 7.41–7.43 (2H, m), 7.53 (1H, dd, $J=10.7$, 15.1 Hz), 10.64 (1H, brs); ¹³C NMR (100 MHz, CDCl3) ^d 56.09, 94.23, 116.48, 119.27, 124.31, 128.78, 129.72, 141.22, 147.29, 158.18, 173.57; IR (KBr) 2905, 2536, 1676, 1597, 1315, 1277, 1236, 1151, 1074, 1003, 920 cm^{-1} . Anal. found: C, 66.8; H, 6.0%. Calcd for $C_{13}H_{14}O_4$: C, 66.66; H, 6.02%.

3.7.4. N-5-(4-Methoxymethoxyphenyl)-2E,4E-butadienoyl piperidine (33). Piperidine (85 mg, 1.00 mmol), BuNMe₂ (303 mg, 3.00 mmol), and DMAP (12 mg, 0.10 mmol) in MeCN (1.0 ml) was added to a stirred solution of 5-(4-methoxymethoxyphenyl)- $2E$, 4E-butadienoic acid $(32; 234 \text{ mg}, 1.00 \text{ mmol})$ and Me₂NSO₂Cl $(1;$ 287 mg, 2.00 mmol) in MeCN (1.0 ml) at $40-45^{\circ}$ C under an Ar atmosphere, and the mixture was stirred at that temperature for 1 h. Water was added to the mixture, which was extracted with EtOAc. The organic phase was washed with water, brine, dried (Na_2SO_4) , and concentrated. The obtained crude product was purified by silica-gel column chromatography (hexane/EtOAc=3:2) to give $N-5-(4$ methoxymethoxyphenyl)- $2E,4E$ -butadienoyl piperidine (33; 271 mg, 90%).

Colorless crystals; mp $70.0-71.5^{\circ}$ C; ¹H NMR (300 MHz, CDCl₃) δ 1.53–1.72 (6H, m), 3.49 (3H, s), 3.49–3.59 (2H, m), 3.60–3.70 (2H, m), 5.21 (2H, s), 6.47 (1H, d, $J=14.7$ Hz), $6.76-6.86$ (2H, m), $6.97-7.07$ (2H, m), 7.34–7.44 (2H, m), 7.40–7.50 (1H, m); 13C NMR $(75 \text{ MHz}, \text{ CDCl}_3)$ δ 24.57, 25.55, 26.66, 43.14, 46.83, 56.06, 94.04, 116.22, 119.72, 125.23, 128.19, 130.16, 138.02, 142.66, 157.37, 165.32; IR (KBr) 3450, 2934, 2855, 1638, 1588, 1510, 1449, 1242, 1010, 839 cm⁻¹. Anal. found: C, 71.7; H, 7.6%. Calcd for $C_{18}H_{23}NO_3$: C, 71.73; H, 7.69; N, 4.65%.

3.7.5. N-5-(4-hydroxyphenyl)-2E,4E-pentadienoyl piper**idine** (*Coumaperine*) (34) \cdot ^{[17](#page-8-0)} Conc. HCl (0.89 g) was added to a stirred solution of $N-5-(4-Methoxymethoxyphenyl)$ -2E,4E-butadienoyl piperidine (33; 532 mg, 1.77 mmol) in THF–2-propanol (3.5 ml, $v/v=1$) at 0–5°C. The mixture was stirred at room temperature for 15 h. Water was added to the mixture, which was extracted with EtOAc. The organic phase was washed with water, brine, dried (Na_2SO_4) , and concentrated. The obtained crude product was purified by silica-gel column chromatography (hexane/ EtOAc=2:3) to give coumaperine $(34; 404 \text{ mg}, 89\%)$.

Colorless crystals (MeOH); mp 209.5-211.0°C; ¹H NMR (300 MHz, Acetone- d_6) δ 1.38–1.69 (6H m), 3.55 (4H, s), 6.64 (1H, d, J=14.4 Hz), 6.82–6.96 (4H, m), 7.28–7.42 (3H, m), 8.84 (1H, s, OH); IR (KBr) 3200, 1634, 1603, $1572, 1510, 1460, 1440, 1277, 1256, 1007, 841 \text{ cm}^{-1}$. HPLC analysis; 99.8% purity [SHIMADZU HPLC system (SLC-10A, DGU-4A, LC-10AD, SIL-10A, CTO-10A, and

detector SPD-10AV, measured at 254 nm; column LiChrosorb Ω Si-60; 10 μ , 4 mm i.d. \times 30 cm); flow rate 1.0 ml/min, solvent: hexane/2-propanol=95:5] t_R =17.56 min.

Acknowledgements

This research was partially supported by a Grant-in-Aid for Scientific Research on Priority Areas (A) 'Exploitation of Multi-Element Cyclic Molecules' and on Basic Areas (C) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, Open Research Center Project, and by the Cosmetology Foundation in Japan.

References

- 1. (a) Benz, G. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I, Eds.; Pergamon: Oxford, 1991; Vol. 6, p 323. (b) Greene, T. W.; Wuts, P. G. Protective Groups in Organic Synthesis. 3rd ed. Wiley-Interscience: New York, 1999; p 372.
- 2. (a) Hassner, A.; Alexanian, V. Tetrahedron Lett. 1978, 46, 4475. (b) Ziegler, F. E.; Berger, G. D. Synth. Commun. 1979, 9, 539.
- 3. (a) Saigo, K.; Usui, M.; Kikuchi, K.; Shimada, E.; Mukaiyama, T. Bull. Chem. Soc. Jpn 1977, 50, 1863. (b) Mukaiyama, T. Angew. Chem., Int. Ed. Engl. 1979, 18, 707.
- 4. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn 1979, 52, 1989.
- 5. (a) Staab, H. A. Angew. Chem., Int. Ed. Engl. 1962, 1, 351. (b) Ohta, S.; Shimabayashi, A.; Aono, M.; Okamoto, M. Synthesis 1982, 833.
- 6. Meseguer, J. D.; Coll, A. L. P.; Lizarbe, J. R. F.; Bilbao, A. Z. Synthesis 1980, 547.
- 7. (a) Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943. (b) Denis, J. N.; Greene, A. E. J. Am. Chem. Soc. 1988, 110, 5917.
- 8. Saitoh, K.; Shiina, I.; Mukaiyama, T. Chem. Lett. 1998, 679.
- 9. (a) Shiina, I.; Ibuka, R.; Kubota, M. Chem. Lett. 2002, 286. (b) Shiina, I.; Kubota, M.; Ibuka, R. Tetrahedron Lett. 2002, 43, 7535.
- 10. For selected examples: (a) Brewster, J. H.; Ciotti, C. J. Jr. J. Am. Chem. Soc. 1955, 77, 6214. (b) Parish, R. C.; Stock, L. M. J. Org. Chem. 1965, 30, 927. (c) Hendrickson, J. B.; Schwartzman, S. M. Tetrahedron Lett. 1975, 16, 277. (d) Rehn, D.; Ugi, I. J. Chem. Res. (S) 1977, 119. (e) Liu, H.-J.; Chan, W. H.; Lee, S. P. Tetrahedron Lett. 1978, 19, 4461. (f) Venkataraman, K.; Wagle, D. R. Tetrahedron Lett. 1979, 3073. (g) Candrasekaran, S.; Turner, J. V. Synth. Commun. 1982, 12, 727. (h) Mukaiyama, T.; Ichikawa, J.; Asami, M. Chem. Lett. 1983, 683. (i) Ramaiah, M. J. Org. Chem. 1985, 50, 4991. (j) Shono, T.; Ishige, O.; Uyama, H.; Kashimura, S. J. Org. Chem. 1986, 51, 546. (k) Otera, J.; Dan-oh, N.; Nozaki, H. J. Org. Chem. 1991, 56, 5307. (l) Folmer, J. J.; Weinreb, S. M. Tetrahedron Lett. 1993, 34, 2737. (m) Takeda, K.; Akiyama, H.; Nakamura, H.; Takizawa, S.; Mizuno, Y.; Takayanagi, H.; Harigaya, Y. Synthesis 1994, 1063. (n) Shiina, I.; Miyoshi, S.; Miyashita, M.; Mukaiyama, T. Chem. Lett. 1994, 515. (o) Zacharie, B.; Connolly, T. P.; Penney, C. L. J. Org. Chem. 1995, 60, 7072. (p) Vedejs, E.; Daugulis, O. J. Org. Chem. 1996, 61, 5702. (q) Hosangadi, B. D.; Dave,

R. H. Tetrahedron Lett. 1996, 37, 6375. (r) Wright, S. W.; Hageman, D. L.; McClure, L. D. Tetrahedron Lett. 1997, 38, 7345. (s) Thierry, J.; Yue, C.; Potier, P. Tetrahedron Lett. 1998, 39, 1557. (t) Kunishima, M.; Morita, J.; Kawachi, C.; Iwasaki, F.; Terao, K.; Tani, S. Synlett 1999, 1255.

- 11. (a) Wakasugi, K.; Misaki, T.; Yamada, K.; Tanabe, Y. Tetrahedron Lett. 2000, 41, 5249. (b) Otera, J. Angew. Chem. Int. Ed. 2001, 40, 2044. For other selected catalytic esterifications: (c) Ishihara, K.; Nakayama, M.; Ohhara, S.; Yamamoto, H. Science 2000, 290, 267. (d) Ishihara, K.; Ohhara, S.; Yamamoto, H. Tetrahedron 2002, 58, 8179. (e) Xiang, J.; Toyoshima, S.; Orita, A.; Otera, J. Angew. Chem. Int. Ed. 2001, 40, 2044. (f) Xiang, J.; Orita, A.; Otera, J. Adv. Synth. Catal. 2002, 344, 84. (g) Manabe, K.; Sun, X.-M.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123, 10101.
- 12. (a) Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y. Tetrehedron 1999, 55, 2183. (b) Tanabe, Y.; Yamamoto, H.; Yoshida, Y.; Miyawaki, T.; Utsumi, N. Bull. Chem. Soc. Jpn 1995, 68, 297. (c) Yoshida, Y.; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. Synthesis 1999, 1633.
- 13. (a) Tanabe, Y.; Murakami, M.; Kitaichi, K.; Yoshida, Y. Tetrahedron Lett. 1994, 35, 8409. (b) Tanabe, Y.; Okumura, H.; Maeda, A.; Murakami, M. Tetrahedron Lett. 1994, 35, 8413. (c) Misaki, T.; Kurihara, M.; Tanabe, Y. Chem. Commun. 2001, 2478. (d) Tanabe, Y.; Misaki, T.; Kurihara, M.; Iida, A. Chem. Commun. 2002, 1628.
- 14. Wakasugi, K.; Nakamura, A.; Tanabe, Y. Tetrahedron Lett. 2001, 42, 7427.
- 15. Opitz, G.; Ehlis, T.; Rieth, K. Chem. Ber. 1990, 123, 1989.
- 16. Wong, Z.; Campaguna, S.; Yang, K. H.; Xu, G. Y.; Pierce, M. E.; Fortunak, J. M.; Confalone, P. N. J. Org. Chem. 2000, 65, 927.
- 17. (a) Inatani, R.; Nakatani, N.; Fuwa, H. Agric. Biol. Chem. 1981, 45, 667. (b) Nakatani, N.; Inatani, R.; Ohta, H.; Nishioka, A. Environ. Health Perspect. 1986, 67, 135.
- 18. Kitano, M.; Wanibuchi, H.; Kikuzaki, H.; Nakatani, N.; Imaoka, S.; Funae, Y.; Hayashi, S.; Fukushima, S. Jpn. J. Cancer Res. 2000, 91, 674.
- 19. Lloyd, R. C.; Dickman, M.; Jones, J. B. Tetrahedron: Asymmetry 1998, 9, 551.
- 20. Gais, H. J. Tetrahedron Lett. 1984, 25, 273.
- 21. McCullough, K. J.; Morgan, A. R.; Nonhebel, D. C.; Pauson, P. L. J. Chem. Res. Synop. 1980, 36.
- 22. Izumi, J.; Shiina, I.; Mukaiyama, T. Chem. Lett. 1995, 141.
- 23. Mukaiyama, T.; Ichikawa, J.; Asami, M. Chem. Lett. 1983, 293.
- 24. Bram, G.; F-Khan, T.; Geraghty, N. Synth. Commun. 1980, 10, 279.
- 25. Kunieda, N.; Suzuki, A.; Kinoshita, M. Bull. Chem. Soc. Jpn 1981, 54, 1143.
- 26. Shiina, I.; Saitoh, K.; Nakano, M.; Suenaga, Y.; Mukaiyama, T. Collect. Czech. Chem. Commun. 2000, 65, 621.
- 27. Matsuda, F.; Itoh, S.; Hattori, N.; Yanagiya, M.; Matsumoto, T. Tetrahedron 1985, 41, 3625.
- 28. Banerji, A.; Jana, S.; Sur, K. R. J. Indian Chem. Soc. 1989, 66, 664.
- 29. Matsumoto, K.; Hashimoto, S.; Otani, S. Angew. Chem. 1986, 98, 569.
- 30. Wojcik, B.; Adkins, H. J. Am. Chem. Soc. 1934, 56, 2419.
- 31. Cabre, J.; Palomo, A. L. Synthesis 1984, 413.